Spark性能测试报告

RDD可以很好地适用于支持数据并行的批量分析应用,包括数据挖掘,机器学习,图算法等,因为这些程序通常都会在很多记录上执行相同的操作。RDD 不太适合那些异步更新共享状态的应用,例如并行web爬行器。因此,我们的目标是为大多数分析型应用提供有效的编程模型,而其他类型的应用交给专门的系 统。

硬件环境:

开发机器是 3台 Intel(R) Xeon(R) CPU E5440 @ 2.83GHz双核 2.8G 4G内存

操作系统:

Red Hat Enterprise Linux Server release 5.7 (Tikanga)

Spark配置:

三节点,每个节点2G内存,14 个维度,100个类别,10次迭代,使用不同大小样例文件分析。

结论1:定义0.8(数据量/2048/3)作为三节点的阈值,当运行数据在阈值内时性能成单调递增,当超过该阈值时,性能急剧下降,当超过阈值2%时性能下降53.11937%,当超过34.01326%,性能下降70.80896%

以下是测试数据:

序号 数据文件大小(M) 记录条数 耗时 数据文件/耗时 数据/内存 数据/内存/节点数
0 33.33 147,106 10 3.333344 0.016274 0.005425
1 100 441,319 13 7.692317 0.048828 0.016276
2 166.67 735,533 15 11.11118 0.081382 0.027127
3 233.33 1,029,746 20 11.66652 0.113931 0.037977
4 341.33 1,506,371 23 14.8406 0.166665 0.055555
5 512 2,259,557 30 17.06666 0.25 0.083333
6 682.67 3,012,743 42 16.25402 0.333335 0.111112
7 853.33 3,765,929 45 18.96291 0.416665 0.138888
8 1,024.00 4,519,115 57 17.96494 0.5 0.166667
9 1,194.67 5,272,301 65 18.37953 0.583335 0.194445
10 1,365.33 6,025,487 73 18.70316 0.666665 0.222222
11 1,536.00 6,778,673 80 19.20001 0.75 0.25
12 1,706.67 7,531,859 95 17.96491 0.833335 0.277778
13 1,877.33 8,285,044 147 12.77097 0.916665 0.305555
14 2,048.00 9,038,230 104 19.6923 1 0.333333
15 2,218.66 9,791,416 113 19.63417 1.08333 0.36111
16 2,389.33 10,544,602 124 19.26881 1.166665 0.388888
17 2,560.01 11,297,788 175 14.62861 1.250005 0.416668
18 2,730.66 12,050,974 184 14.84056 1.33333 0.444443
19 2,901.34 12,804,160 164 17.69109 1.41667 0.472223
20 3,072.00 13,557,346 155 19.81934 1.5 0.5
21 3,242.67 14,310,532 162 20.01647 1.583335 0.527778
22 3,413.34 15,063,718 166 20.56231 1.66667 0.555557
23 3,754.68 16,570,089 179 20.97585 1.83334 0.611113
24 4,266.68 18,829,646 189 22.57501 2.08334 0.694447
25 4,500.01 19,859,392 209 21.53114 2.197271 0.732424
26 4,666.68 20,594,925 202 23.10235 2.278652 0.759551
27 4,766.68 21,036,244 202 23.5974 2.32748 0.775827
28 4,866.68 21,477,563 226 21.53396 2.376309 0.792103
29 4,966.68 21,918,882 220 22.5758 2.425137 0.808379
30 5,066.68 22,360,201 458 11.06261 2.473965 0.824655
31 5,120.01 22,595,577 463 11.05834 2.500005 0.833335
32 6,656.01 29,374,250 1010 6.59011 3.250005 1.083335

性能趋势图:

Spark配置:

一节点, 2G内存,14 个维度,100个类别,10次迭代。

结论2:定义0.9(数据量/2048)作为三节点的阈值,当运行数据在阈值内时性能成单调递增,当超过该阈值时,性能急剧下降,当超过阈值8.3334961%时性能下降57.61797318%,当超过18.18167291%,性能下降66.4701143%

当超过36.36441116%,性能下降94.14757913%

序号 数据文件大小(M) 记录条数 耗时 数据文件/耗时 数据/内存
0 33.33 147,106 10 3.333344 0.016274
1 100.00 441,319 20 5.000006 0.048828
2 166.67 735,533 27 6.17288 0.081382
3 233.33 1,029,746 34 6.862657 0.113931
4 341.33 1,506,371 45 7.585197 0.166665
5 512.00 2,259,557 64 7.999997 0.25
6 682.67 3,012,743 85 8.031401 0.333335
7 853.33 3,765,929 102 8.365989 0.416665
8 1,024.00 4,519,115 118 8.67798 0.5
9 1,194.67 5,272,301 137 8.720216 0.583335
10 1,365.33 6,025,487 153 8.923729 0.666665
11 1,536.00 6,778,673 176 8.727279 0.75
12 1,706.67 7,531,859 193 8.84283 0.833335
13 1,877.33 8,285,044 223 8.41853 0.916665
14 2,048.00 9,038,230 574 3.567944 1
15 2,218.66 9,791,416 786 2.822724 1.08333
16 2,389.33 10,544,602 1134 2.106995 1.166665
17 2,560.01 11,297,788 5196 0.492688 1.250005

性能趋势图:

总论:在执行Spark程序的时候需预估所需的内存,当超过一定阈值后,性能将急剧下降。